Forced wave motion with internal and boundary damping.

نویسندگان

  • Tobias Louw
  • Scott Whitney
  • Anu Subramanian
  • Hendrik Viljoen
چکیده

A d'Alembert-based solution of forced wave motion with internal and boundary damping is presented with the specific intention of investigating the transient response. The dynamic boundary condition is a convenient method to model the absorption and reflection effects of an interface without considering coupled PDE's. Problems with boundary condition of the form [Formula: see text] are not self-adjoint which greatly complicates solution by spectral analysis. However, exact solutions are found with d'Alembert's method. Solutions are also derived for a time-harmonically forced problem with internal damping and are used to investigate the effect of ultrasound in a bioreactor, particularly the amount of energy delivered to cultured cells. The concise form of the solution simplifies the analysis of acoustic field problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of the heave motion of a semi-submersible platform with damping sheets subjected to sea waves

In this study, the damping sheets were attached to a semi-submersible platform to mitigate the heave motions. We first examined a typical GVA4000 semi-sub under a monochromatic linear wave train in deep water. an analytical method based on diffraction theory was used to determine the heave motion response. The results revealed that the analytical results show good agreement with available exper...

متن کامل

Three-dimensional control of Tetrahymena pyriformis using artificial magnetotaxis

Related Articles Forced wave motion with internal and boundary damping J. Appl. Phys. 111, 014702 (2012) Interaction of lipid vesicle with silver nanoparticle-serum albumin protein corona Appl. Phys. Lett. 100, 013703 (2012) A thermodynamical model for stress-fiber organization in contractile cells Appl. Phys. Lett. 100, 013702 (2012) Testing resonating vector strength: Auditory system, electri...

متن کامل

Thermoelastic Damping and Frequency Shift in Kirchhoff Plate Resonators Based on Modified Couple Stress Theory With Dual-Phase-Lag Model

The present investigation deals with study of thermoelastic damping and frequency shift of Kirchhoff plate resonators by using generalized thermoelasticity theory of dual-phase-lag model. The basic equations of motion and heat conduction equation are written with the help of Kirchhoff-Love plate theory and dual phase lag model. The analytical expressions for thermoelastic damping and frequency ...

متن کامل

Simulation of static sinusoidal wave in deep water environment with complex boundary conditions using proposed SPH method

The study of wave and its propagation on the water surface is among significant phenomena in designing quay, marine and water structures. Therefore, in order to design structures which are exposed to direct wave forces, it is necessary to study and simulate water surface height and the wave forces on the structures body in different boundary conditions. In this study, the propagation of static ...

متن کامل

Damped Vibrations of Parabolic Tapered Non-homogeneous Infinite Rectangular Plate Resting on Elastic Foundation (RESEARCH NOTE)

 In the present paper damped vibrations of non-homogeneous infinite rectangular plate of parabolically varying thickness resting on elastic foundation has been studied. Following Lévy approach, the equation of motion of plate of varying thickness in one direction is solved by quintic spline method. The effect of damping, elastic foundation and taperness is discussed with permissible range of pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physics

دوره 111 1  شماره 

صفحات  -

تاریخ انتشار 2012